
Perldoop: Efficient Execution of Perl Scripts on
Hadoop Clusters

José M. Abuín, Juan C. Pichel, Tomás F. Pena, Pablo Gamallo, and Marcos García
Centro de Investigación en Tecnoloxías da Información (CiTIUS)

Universidade de Santiago de Compostela
Santiago de Compostela, Spain

Email: {josemanuel.abuin,juancarlos.pichel,tf.pena,pablo.gamallo,marcos.garcia.gonzalez}@usc.es

Abstract—Hadoop is one of the most important implemen-
tations of the MapReduce programming model. It is written
in Java and most of the programs that run on Hadoop are
also written in this language. Hadoop also provides an utility
to execute applications written in other languages, known as
Hadoop Streaming. However, the ease of use provided by Hadoop
Streaming comes at the expense of a noticeable degradation in
the performance.

In this work, we introduce Perldoop, a new tool that au-
tomatically translates Hadoop-ready Perl scripts into its Java
counterparts, which can be directly executed on Hadoop while
improving their performance significantly. We have tested our tool
using several Natural Language Processing (NLP) modules, which
consist of hundreds of regular expressions, but Perldoop could
be used with any Perl code ready to be executed with Hadoop
Streaming. Performance results show that Java codes generated
using Perldoop execute up to 12x faster than the original Perl
modules using Hadoop Streaming. In this way, the new NLP
modules are able to process the whole Wikipedia in less than 2
hours using a Hadoop cluster with 64 nodes.

I. INTRODUCTION

In the modern digital society, it is estimated that each day
are created around 2.5 quintillion bytes of data (2.5 Exabytes),
in such a way that 90% of the data all over the world were
created just only in the last two years [1]. These data come
from all type of sources: sensors used to obtain information
on the climate, publications in social networks, blogs, digital
images and video, etc. For instance, Twitter generates about
8 Terabytes of data per day, while Facebook captures about
500 Terabytes. This is what is known as Big Data. One of the
main characteristics of this amount of information is the fact
that, in many cases, is not structured.

The MapReduce framework has become the de-facto stan-
dard for parallel processing of Big Data and has gained a wide
adoption in both industry and research fields. One of the most
successful open-source implementations based on Google’s
MapReduce [2] programming model is Hadoop [3], which is
implemented using Java. In this model, the input and output
of a MapReduce computation is a list of (key, value) pairs.
Users only need to implement Map and Reduce functions.
Each map produce zero or more intermediate (key, value) pairs
by consuming one (key, value) pair. After this, the runtime
groups automatically these intermediate (key, value) pairs into
buckets representing reduce tasks. Reduce functions take an
intermediate key and a list of values as input and produce
zero or more output results.

Even though code developing in Hadoop is largely sim-
plified with its characteristics as the automatic input splitting,
task scheduling or fault tolerance mechanism, to write a Java
MapReduce program is not straightforward. Besides, in some
research areas, Java is not normally employed, and program-
mers are more familiar with other high level programming
languages like Perl or Python. For example, Natural Language
Processing (NLP) and Bioinformatics researchers are used to
write code in Perl due to its unique ability to process text using
regular expressions. These researchers have found in Hadoop
Streaming the way to easily analyze big volumes (Gigabytes
or even Terabytes) of textual information. However, important
degradations in the performance were detected using Hadoop
Streaming with respect to Hadoop Java codes [4]. Only for
computational intensive jobs whose input/output size is small,
the performance of Hadoop Streaming is sometimes better
because of using a more efficient programming language.

For the reasons detailed above, in this paper we introduce
Perldoop, a new tool that automatically translates Perl scripts
prepared to be executed using Hadoop Streaming into Hadoop-
ready Java codes. Our tool has been tested using several NLP
modules as input, which consist of hundreds of regular expres-
sions. In particular, three linguistic modules were considered:
Name Entity Recognition (NER), PoS-Tagging and Named
Entity Classification (NEC).

Performance tests were carried out on a 64 nodes Hadoop
cluster. The results show that the automatically generated Java
codes execute up to 12× faster than the original Perl modules
using Hadoop Streaming. In this way, the new NLP modules
are able to process the whole Wikipedia in less than 2 hours.

II. THE PERLDOOP TOOL

As it was stated in the introduction, our objective is
to translate Hadoop Streaming codes written in Perl to its
Java equivalents, in order to take advantage of the higher
performance of Java codes in Hadoop [4]. The general case
of automatically translating an arbitrary Perl code into its Java
equivalent is a very hard problem, due to the characteristics of
both languages. One of the main difficulties to create a general
source-to-source translator is that Perl has a Turing-complete
grammar in such a way that parsing can be affected by
run-time code executed during the compile phase. Therefore,
Perl cannot be parsed by a straight Lex/Yacc lexer/parser
combination. Instead, the interpreter implements its own lexer,
which coordinates with a modified GNU Bison parser to
resolve ambiguities in the language [5], [6].

Some efforts have been done to integrate (not to translate)
Perl into Java code. This is the case of the Java-Perl Library
(JPL) [7], which allows to invoke Perl methods inside a Java
program. We discard this solution because the performance
obtained by JPL codes is equivalent to the one obtained by
using directly Perl codes and Hadoop Streaming.

On the other hand, we cannot forget that Perl and Java are
two very different languages. There are a lot of differences
between them, but the following are the most relevant to our
case:

• Variable declaration: Programmers do not have to
declare and establish the variable type in Perl, while
that is mandatory in Java.

• Array size and accesses: If the programmers want to
access a non existent array position in Perl, the array
is expanded if it is a write operation, and positions
in the middle are set to undef, or, in the case of
reading, it returns undef [8]. However, Java produces
an execution error.

• Boolean values: Perl does not have boolean values
such as “True” and “False”, which can be assigned
to variables. Instead, it can handle another variables
as booleans. For example, the strings “” and “0” are
considered as “False”, and also the integer and real
values 0 and 0.0 [8]. Java uses boolean variables, and
it cannot process integers, real or strings as booleans
like Perl.

Due to all the aforementioned difficulties, our objective
in this work was not to develop a powerful tool that allows
to automatically translate any existent Perl code to Java, but
a simple and easy-to-use tool that takes as input Perl codes
written for Hadoop Streaming, following a reduced number
of additional programming rules, and produces Hadoop-ready
Java codes. We have called this tool Perldoop, and it was
developed using Python.

A. How it works

Perldoop uses file templates and tags, as it is shown in
Figure 1. The main goal of the templates is to contain certain
parts of the Java code that has no direct translation from Perl,
such as class declarations, some auxiliary functions needed in
Java or global variables. In the near future, and as Perldoop
evolves, we expect that templates will not be necessary.

The programmer must indicate the position to insert the
translated code into the file template using the next tags:

//<java><start> and //<java><end>

In the same way, the Perl code to be translated needs to
be surrounded by the following tags:

#<perl><start> and #<perl><end>

The translation process can be summarized in these steps:

1) The programmer tags the Perl file and creates the
Java template, including the class declaration and
constructor.

Class declaration

Auxiliary functions

Java File

Template

Perl File to

Translate

Class declaration

Auxiliary functions

Resulting

Java File

//<java><start>

//<java><end>

//<java><start>

Java code translated

from Perl

//<java><end>

Perl code

#<perl><start>

Perl code to translate

#<perl><end>

Perl code

Fig. 1. Use of templates and tags with Perldoop.

2) The Perldoop tool is executed to generate the new
Java code.

The main benefit of using this methodology is the sim-
plicity of use. Note that programmers have to insert the labels
in the Perl code and create the templates only once. After
that procedure, the Perl code to be translated can be modified
at any time. To obtain a new Java version of the code it
is only necessary to execute Perldoop again, and it will be
automatically generated.

Regarding the limitations of Perldoop, the main one is
that programmers have to tag the Perl code and make the
corresponding Java template. In addition, there are a few tips or
rules that the programmer should follow in order to guarantee
the correct translation when using Perldoop.

B. Programming rules

Next we detail the programming rules that the Perl codes
should follow to assure the correctness of the Java codes
automatically generated by Perldoop:

1) Ordered conditional blocks. It means that the condi-
tional expression should appear before the sentences
to be executed if the condition is fulfilled. Use:

if(condition){
sentences;

}

instead of: sentences if(condition);
2) Perform string concatenations with the “.” operator.

For example:
$variable = $var1." ".$var2;

3) Restrict the access to array positions not previously
allocated.

4) Use a different name for each variable. Perl allows:
my $feat; # variable
my @feat; # array

while in Java the programmer has to declare two
different variables.

5) In Perl, the programmer can do the following using
an integer variable: if($variable)
Java only allows this expression if the variable is a
boolean. Therefore, the expression should be:

if($variable!=0)

A similar situation arises when using hashes in Perl.

#!/usr/bin/perl -w

#<perl><start>

my $line; #<var><string>
my @words; #<array><string>
my $key; #<var><string>
my $valueNum = "1"; #<var><string>
my $val; #<var><string>

while ($line = <STDIN>) { #<map>
chomp ($line);
@words = split (" ",$line);
foreach my $w (@words) { #<var><string>

$key = $w."\t";
$val = $valueNum."\n";
print $key.$val;

}
}

#<perl><end>

import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public static class WordCountMap extends Mapper<Object, Text, Text, Text>{
@Override
public void map(Object incomingKey, Text value,
Context context) throws IOException, InterruptedException {

try{

//<java><start>
String line;
String[] words;
String key;
String valueNum = "1";
String val;
line = value.toString();
line = line.trim();
words = line.split(" ");
for (String w : words) {

key = w+;
val = valueNum;
context.write(new Text(key),new Text(val));

}
//<java><end>

}
catch(Exception e){
System.out.println(e.toString());

}
}

}

Fig. 2. WordCount mapper example using Perl (top) and its equivalent Java
code generated using Perldoop (bottom).

6) Declare and initialize the variables with the corre-
sponding label, which includes the data type and class
(variable, array, etc.). For example:

#<var><string>
#<array><integer>
#<arraylist><string>

In addition, we must take into account that Boolean
values are not available in Perl. The next label is used
to identify a boolean variable:

#<var><boolean>

Additionally, programmers should also include a label to
indicate if the Perl code corresponds to a mapper (<map>) or
a reducer (<reduce>).

As we have commented previously, Perl is well-known for
its unrivaled ability to process text using very powerful features
such as regular expressions. The native Java support for regular
expressions is not as good as the provided by Perl. A list of the
main differences can be found in [9]. For this reason, in order
to improve the handle of regular expressions in Java, Perldoop
takes advantage of the jregex library [10]. This library uses Perl
5.6 regex syntax, including lookahead/lookbehind assertions
and it holds a BSD license.

C. Example: WordCount in Perl

Next we present, for illustrating purposes, an example of
the use of Perldoop. The goal is to translate a simple Perl

#!/usr/bin/perl -w

#<perl><start>

my $count = 0; #<var><integer>
my $value; #<var><integer>
my $newkey; #<var><string>
my $oldkey; #<var><string><null>
my $line; #<var><string>
my @keyValue; #<var><string>

while ($line = <STDIN>) { #<reduce>
chomp ($line);
$keyValue = split ("\t",$line);

$newkey = $keyValue[0];
$value = $keyValue[1];

if (!(defined($oldkey))) {
$oldkey = $newkey;
$count = $value;

}
else {
if ($oldkey eq $newkey) {
$count = $count + $value;

}
else {
my $returnKey = $oldkey."\t"; #<var><string>
my $returnValue = $count."\n"; #<var><string>
print $returnKey.$returnValue;
$oldkey = $newkey;
$count = $value;

}
}

}
my $returnKey = $oldkey."\t"; #<var><string>
my $returnValue = $count."\n"; #<var><string>
print $returnKey.$returnValue;

#<perl><end>

import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public static class WordCountReducer extends Reducer<Text, Text, Text, Text> {
int count = 0;
@Override
public void reduce(Text key, Iterable<Text> values,
Context context) throws IOException, InterruptedException {

//<java><start>
int value;
String newkey;
String oldkey = null;
String line;
for (Text val : values) {
newkey = key.toString();
value = Integer.parseInt(val.toString());
if (!(oldkey!= null)) {
oldkey = newkey;
count = value;

}
else{
if (oldkey.equals(newkey)) {
count = count + value;

}
else{
String returnKey = oldkey;
String returnValue = String.valueOf(count);
context.write(new Text(returnKey),
new Text(returnValue));
oldkey = newkey;
count = value;

}
}

}
String returnKey = oldkey;
String returnValue = String.valueOf(count);
context.write(new Text(returnKey),new Text(returnValue));
//<java><end>

}
}

Fig. 3. WordCount reducer example using Perl (top) and its equivalent Java
code generated using Perldoop (bottom).

script into a Hadoop-ready Java class. In particular, we have
selected the Perl version of the WordCount, which counts the
number of occurrences of each word in a text document. This
code is a typical example used to test a Hadoop infrastructure.

Figures 2 and 3 show, on the top, the Perl code of
the WordCount mapper and reducer, respectively. Note that
these codes have been tagged following the programming
tips detailed above. Next, the programmer has to create the
Java templates with the class declaration where the translated
codes will be inserted. Note that templates correspond to

the Java code not included between <java><start> and
<java><end>. After this step, Perldoop is executed. The
resulting Hadoop-ready Java codes are displayed on the bottom
of Figures 2 and 3. We must highlight that Perldoop can be
applied to any Perl code ready to be executed with Hadoop
Streaming.

III. CASE STUDIES: NLP SCRIPTS

Natural Language Processing (NLP) is considered as one
of the methodologies more suited to structure and organize
the textual information accessible through Internet. Linguistic
processing of large amount of text is a complex task that
requires the use of several subtasks organized in interconnected
modules. Most of the existent NLP modules are programmed
using Perl due to its unique ability to process text using
regular expressions. One of the main problems found by the
researchers in the NLP area is the high computational cost of
their tools, which makes them impractical for the analysis of
big volumes (Gigabytes or even Terabytes) of documents. As a
consequence, the use of parallelism and Big Data technologies
is mandatory in order to overcome these limitations.

Perldoop has been tested using several NLP modules. In
particular, we have used a set of linguistic modules [11], [12].
These modules are written in Perl, and perform accurate lin-
guistic annotation on large amounts of text corpora. The whole
architecture consists of a pipeline in which these modules are
chained, in such a way that the output of each module feeds
directly the input of the next one. The text is linguistically
annotated at increasingly complex level of analysis, i.e. sen-
tence segmentation, tokenization, word splitting, Named Entity
Recognition (NER), Part-of-Speech (PoS) tagging, and Named
Entity Classification (NEC). The analysis chain has more
than 150 regular expressions. In this section, we will briefly
describe the last three processes in the analysis chain: NER,
PoS-tagging, and NEC. These modules have been integrated
into a Hadoop infrastructure using Perldoop. Note that these
modules are suited to be used in more complex and higher level
linguistic applications such as machine translation, information
retrieval, question answering, or even new intelligent systems
for technological surveillance and monitoring.

• Named Entity Recognition (NER): This task consists
of identifying as a single unit (or token) those words
or chains of words denoting an entity, e.g. New York,
University of San Diego, Herbert von Karajan, etc.
The module is based on a set of language-independent
rules that take into account information on both a large
lexicon of forms and the relative position of words
within the sentence.

• PoS-Tagging: This module assigns each token of the
input text a single PoS tag provided with morphologi-
cal information e.g. singular and masculine adjective,
past participle verb, plural and feminine noun, etc.
The module consists of a Bayesian classifier whose
features are bigrams of tokens which represent the
immediate left and right contexts of the target token
[11][13]. The module makes use of the same tagset
and lexicon as FreeLing, a well-known suite of mul-
tilingual linguistic tools [14].

• Named Entity Classification (NEC): The last step of
the linguistic analysis is the semantic classification

of those entities identified in the previous NER step.
Named Entity Classification (NEC) is the process
of classifying entities by means of classes such as
“People”, “Organizations”, “Locations”, or “Miscel-
laneous”. NEC is a crucial task for several natural
language applications, namely Question Answering
and Information Extraction. The NEC module relies
on a distant-supervised strategy and consists of two
tasks. First, large resources (e.g. gazetteers of per-
sons, locations, and organizations) are automatically
generated with the aid of encyclopedic data stored in
databases such as FreeBase [15] and DBpedia [16].
Second, a set of disambiguation rules are applied on
previously identified entities, in order to solve both
ambiguous and unknown entities. This module was
described in [12] and reached state-of-the-art precision
on different test corpora.

IV. PERFORMANCE EVALUATION

The experiments shown in this section were performed on a
Hadoop cluster installed at the Galicia Supercomputing Center
(CESGA), which consists of 64 nodes. Each node has an
Intel Xeon E5520 processor and 1 GB of RAM memory. The
Hadoop version is the 1.1.2, while the Java and Perl versions
are 1.7.0 and 5.10.1 respectively. The performance results for
the NLP Perl modules considered in the work (NER, Tagger
and NEC) were obtained using the Wikipedia in plain text (file
size of 2.1 GB) as input. The block size was 128 MB.

As a first approach, we have integrated the sequential
NLP Perl modules into a Hadoop infrastructure using the
Hadoop Streaming tool. Afterwards, the same Perl codes
were automatically converted into Hadoop-ready Java codes
using the Perldoop tool. A performance comparison of both
approaches is shown next. Note that in this particular case only
mappers were generated because reducers are not necessary.

Figures 4 shows the execution times of the NER, Tagger
and NEC modules on the cluster using both, Hadoop Streaming
and the new automatically generated Java codes with Hadoop
(Perldoop + Hadoop in the figures). Different number of nodes
were considered. Note that 17 nodes were used instead of 16
because, for the latter, the split size was bigger than the block
size. An important reduction of the processing time is observed
for all the parallel executions with respect to the sequential
case, both using Hadoop Streaming and Hadoop. For example,
the original Tagger and NEC modules require about 19 days
(more than 450 hours) to process the whole Wikipedia, while
using Hadoop Streaming this time reduces to less than 16 hours
using 64 nodes. Despite these important improvements, the
execution times using Hadoop Streaming are still too high.

Java codes generated by Perldoop using one node behave
better than their Perl counterparts, but the processing times
are also very high. Considering the parallel executions, the
performance of the new Java modules clearly outperforms the
Perl ones, reducing the processing times to less than 2 hours
for all the NLP modules when using 64 nodes.

Figure 5 shows the speedups obtained by the Perldoop
generated Java modules using Hadoop with respect to the
original Perl codes using Hadoop Streaming. The performance
gains range from 1.6× to 12.1×. For parallel executions, we

1 17 32 64

1

10

100
58.4

6.7

3.8

2

35.5

2.4

1.3

0.7

Number of nodes

Ti
m

e
(H

ou
rs

)

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64
1

10

100

500 456.4

54.6

29.9

15.4

84.1

4.9

2.7

1.4

Number of nodes

Ti
m

e
(H

ou
rs

)

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64
1

10

100

500 457.4

61.7

30.7

15.5

84.2

5.1

2.7

1.5

Number of nodes

Ti
m

e
(H

ou
rs

)

Perldoop + Hadoop
Perl + Hadoop Streaming

Fig. 4. Execution time of the NER (left), Tagger (center) and NEC (right) modules on a Hadoop cluster (log scale).

1 17 32 64
0

2

4

6

8

10

12

1.
6

2
.7 3 3

5.
4

10
.9

11
.1

11
.1

5
.4

12
.1

11
.3

10
.7

Number of nodes

Sp
ee

du
p

NER Tagger NEC

Fig. 5. Performance improvement of the Java modules generated by Perldoop
using Hadoop with respect to the use of Perl and Hadoop Streaming.

must highlight that the Tagger and NEC modules process the
Wikipedia, at least, 10× faster than using Hadoop Streaming.
The worst behavior is observed for the NER module, which
is the NLP module with low computational cost. Despite of
that, speedups up to 3× are reached. These results confirm the
important performance differences between using Java codes
with Hadoop, and the Perl modules with Hadoop Streaming.

But, in addition to decrease the processing times, the
scalability of the new NLP modules also improves when using
Hadoop. Figure 6 shows the speedup of the Java and Perl
versions of the modules when using Hadoop and Hadoop
Streaming. While the speedups observed with Hadoop Stream-
ing are far from the ideal case, the new Java modules generated
by Perldoop are closer to it. For example, considering 64
nodes, the speedups of the NER, Tagger and NEC modules
are 51.2×, 60.8× and 57.9× respectively.

V. RELATED WORK

With respect to the Hadoop performance, several studies
have compared Hadoop Streaming with pure Hadoop Java
codes and probed that Hadoop Streaming degrades the per-
formance a lot for data intensive jobs [4]. Other authors
proposed improvements to the Hadoop Streaming code [26] or
developed their own MapReduce framework on Hadoop [27].
Alternatively, in [28] a Python based programming model
for MapReduce similar to the Java one is presented, which
provides a Python API for both the MapReduce and the
distributed file system using Hadoop Pipes. In any case, despite
the improvement gained over Hadoop Streaming, Java codes
still have a better performance in Hadoop.

In the last few years, some work has been carried out to use
Big Data technologies (mainly the MapReduce programming
models) to deal with some aspect of NLP. In statistical trans-
lation, MapReduce has been used in [17] and [18]. In [19],
the author uses Hadoop to build word co-occurrence matrices
from large corpora, whilst Pantel et al. [20] use the MapReduce
framework for computing the pairwise semantic similarity
between words and in [21] the authors use it for paraphrase
acquisition. Most of these works developed ad-hoc solutions
adapted to the MapReduce paradigm, using Java in order to
get the best performance.

Other authors proposed to adapt existing codes, written in
scripting languages like Python, to the MapReduce framework.
So, in [22], Hadoop Pipes and SWIG [23] have been used
to integrate NLTK (Natural Language Toolkit) [24], which is
written in Python, into Hadoop. Hadoop Pipes provides slightly
better performance than Streaming, but it is worse than Java.
On the other hand, Attardi et al. [25], present a suite of tools for
text analytics based on the software architecture paradigm of
data pipelines, using a modified version of Hadoop Streaming
that allows them to have an ordered output. Unlike those
works, the solution presented in this paper uses previously
developed Perl codes, which effortlessly are translated into
Java code ready to be executed in Hadoop. So, it combines
the expressiveness and power of Perl regular expressions with
the good performance of Java codes running in Hadoop.

VI. CONCLUSIONS

Hadoop is the most important implementation of the
MapReduce programming model. It provides an utility to
execute applications written in languages different from Java,
known as Hadoop Streaming. However, the ease of use pro-
vided by Hadoop Streaming comes at the expense of noticeable
degradations in the performance.

In this work, we introduce Perldoop, a new tool that
automatically translates Hadoop Streaming scripts written in
Perl into Hadoop-ready Java codes. Perldoop is a simple and
easy-to-use tool that takes as input Perl codes written following
a reduced number of programming rules, and produce Hadoop-
ready Java codes. To the best of our knowledge, this is the first
tool to deal with this problem.

Perl is well-known for its unrivaled ability to process text
using very powerful features like regular expressions. For this
reason, a lot of Natural Language Processing (NLP) applica-
tions have been developed using this language. We have tested

1 17 32 64

1

10

100

1x

8.7x

15.2x

28x

1x

14.5x

27.9x

51.2x

Number of nodes

Sp
ee

du
p

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64

1

10

100

1x

8.4x

15.3x

29.6x

1x

16.8x

31.3x

60.8x

Number of nodes

Sp
ee

du
p

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64

1

10

100

1x

7.4x

14.9x

29.4x

1x

16.5x

31.1x

57.9x

Number of nodes

Sp
ee

du
p

Perldoop + Hadoop
Perl + Hadoop Streaming

Fig. 6. Speedup with respect to the sequential version in Java and Perl for the NER (left), Tagger (center) and NEC (right) modules (log scale).

our tool using several NLP modules that perform accurate
linguistic annotation on large amounts of text corpora. In
particular, the linguistic modules considered in this work carry
out the following tasks: Named Entity Recognition (NER),
Part-of-Speech (PoS) tagging, and Named Entity Classification
(NEC). These modules were automatically translated into
Hadoop-ready Java codes using Perldoop.

A performance comparison using the original Perl scripts
with Hadoop Streaming, and the new Java codes with Hadoop
was performed on a cluster. An important decrease in the
processing times was observed with respect to the sequential
case, both using Hadoop Streaming and Hadoop. However, the
performance of the new Java modules clearly outperforms the
Perl ones, reaching speedups up to 12×. We must highlight
that the new Java modules reduce the time required to process
the whole Spanish Wikipedia to less than 2 hours when using
64 nodes, demonstrating the benefits of using Perldoop.

ACKNOWLEDGMENTS

This work has been supported by the Xunta de Galicia
(Spain) grant EM2013/041. The authors also wish to thank
CESGA for providing access to their supercomputing facilities.

REFERENCES

[1] IBM, “Big data at the speed of business,” http://www-01.ibm.com/
software/data/bigdata/what-is-big-data.html, [Online; accessed July,
2014].

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[3] Apache Hadoop, http://hadoop.apache.org, [Online; accessed July,
2014].

[4] M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, and M. Guo, “More convenient
more overhead: the performance evaluation of Hadoop streaming,” in
ACM Symp. on Research in Applied Computation, 2011, pp. 307–313.

[5] J. Kegler, “Perl and undecidability: The halting problem,” The Perl
Review, vol. 4, pp. 21–25, 2008.

[6] ——, “Perl and undecidability: Perl is undecidable,” The Perl Review,
vol. 5, pp. 7–11, 2008.

[7] L. Wall, B. Jepson, N. Patwardhan, E. Siever, and D. Futato, PERL
Resource Kit UNIX Edition: 4 Volume Set with CD-ROM. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 1997.

[8] “Perl programming documentation,” http://perldoc.perl.org/, [Online;
accessed July, 2014].

[9] Oracle, “Java platform, standard edition 7 API specification,” http://
docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#jcc, [On-
line; accessed July, 2014].

[10] JRegex, Regular Expressions for Java, http://jregex.sourceforge.net/,
[Online; accessed July, 2014].

[11] P. Gamallo and M. García, “Using morphosyntactic post-processing to
improve PoS-tagging accuracy,” in 9th Int. Conf. on Computational
Processing of Portuguese Language (PROPOR), 2010.

[12] ——, “A resource-based method for named entity extraction and
classification,” LNCS series, vol. 7026, pp. 610–623, 2011.

[13] M. Banko and R. Moore, “Part of speech tagging in context,” in Proc.
of the 20th Int. Conf. on Computational Linguistics, 2004.

[14] L. Padró and E. Stanilovsky, “Freeling 3.0: Towards wider multilingual-
ity,” in Proc. of the LREC, 2012.

[15] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
a collaboratively created graph database for structuring human knowl-
edge,” in Proc. of the ACM SIGMOD Int. Conf. on Management of
data, 2008, pp. 1247–1250.

[16] J. Lehman et al., “DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia,” Semantic Web Journal, 2014.

[17] C. Dyer, A. Cordova, A. Mont, and J. Lin, “Fast, easy, and cheap: Con-
struction of statistical machine translation models with MapReduce,” in
Proc. of the Workshop on Statistical Machine Translation, 2008, pp.
199–207.

[18] R. Ahmad, P. Kumar, B. Rambabu, P. Sajja, M. K. Sinha, and R. San-
gal, “Enhancing throughput of a machine translation system using
MapReduce Framework: An engineering approach,” in 9th Int. Conf.
on Natural Language Processing, 2011.

[19] J. Lin, “Scalable language processing algorithms for the masses: A case
study in computing word co-occurrence matrices with MapReduce,” in
Proc. of the EMNLP, 2008, pp. 419–428.

[20] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas, “Web-
scale distributional similarity and entity set expansion,” in Proc. of the
EMNLP, 2009, pp. 938–947.

[21] D. Metzler and E. Hovy, “Mavuno: a scalable and effective Hadoop-
based paraphrase acquisition system,” in Proc. of the 3rd Workshop on
Large Scale Data Mining: Theory and Applications, 2011, p. 3.

[22] P. Bone, “Integrating NLTK with the Hadoop MapReduce framework
– 433-460 Human Language Technology Project,” 2008.

[23] D. M. Beazley, “SWIG: An easy to use tool for integrating scripting
languages with C and C++,” in Proc. of the 4th USENIX Tcl/Tk
workshop, 1996, pp. 129–139.

[24] S. Bird, “NLTK: the natural language toolkit,” in Proc. of the COL-
ING/ACL on Interactive presentation sessions, 2006, pp. 69–72.

[25] G. Attardi, S. D. Rossi, and M. Simi, “The Tanl pipeline,” in Proc. of
the 7th Int. Conf. on Language Resources and Evaluation, may 2010.

[26] L. Lai et al., “ShmStreaming: A shared memory approach for improving
Hadoop streaming performance,” Int. Conf. on Advanced Information
Networking and Applications, pp. 137–144, 2013.

[27] E. Dede et al., “MARISSA: MApReduce implementation for streaming
science applications.” in eScience, 2012, pp. 1–8.

[28] S. Leo and G. Zanetti, “Pydoop: a Python MapReduce and HDFS
API for Hadoop,” in Proc. of the 19th ACM Int. Symposium on High
Performance Distributed Computing, 2010, pp. 819–825.

